Limit Cycle Bifurcations from a Nilpotent Focus or Center of Planar Systems
نویسندگان
چکیده
and Applied Analysis 3 where g x ax O x 1 , m ≥ 2 system 1.8 is a generalized Liénard system . Stróżyna and Żoła̧dek 17 proved that this formal normal form can be achieved through an analytic change of variables. Thus, if 1.4 has a center or focus at the origin, then it can be changed into 1.8 with g x x2n−1 a2n−1 O x , n ≥ 2, a2n−1 > 0. 1.9 According to 11 under 1.9 by a change of variables x and t of the form:
منابع مشابه
Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملLimit Cycle bifurcations from Centers of Symmetric Hamiltonian Systems perturbed by cubic polynomials
In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials. First, following Han [2012] we develop a method to study the analytical property of the Melnikov function near the origin for near-Hamiltonian system having the origin as its elementary center or nilpotent center....
متن کاملTen Limit Cycles in a Quintic Lyapunov System
In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small ...
متن کاملThe Problem of Distinguishing between a Center and a Focus for Nilpotent and Degenerate Analytic Systems
In this work we study the centers of planar analytic vector fields which are limit of linear type centers. It is proved that all the nilpotent centers are limit of linear type centers and consequently the Poincaré–Liapunov method to find linear type centers can be also used to find the nilpotent centers. Moreover, we show that the degenerate centers which are limit of linear type centers are al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014